The square root depth wave equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The geometrical quantity in damped wave equations on a square

The energy in a square membrane Ω subject to constant viscous damping on a subset ω ⊂ Ω decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate τ (ω) of this decay satisfies τ (ω) = 2min(−μ(ω), g(ω)) (see Lebeau [9]). Here μ(ω) denotes the spectral abscissa of the damped wave equation operator and g(ω) is a number called...

متن کامل

Schrödinger equations for the square root density of an eigenmixture and the square root of an eigendensity spin matrix

We generalize a “one eigenstate” theorem of Levy, Perdew and Sahni (LPS) [1] to the case of densities coming from eigenmixture density operators. The generalization is of a special interest for the radial density functional theory (RDFT) for nuclei [2], a consequence of the rotational invariance of the nuclear Hamiltonian; when nuclear ground states (GSs) have a finite spin, the RDFT uses eigen...

متن کامل

On the square root of quadratic matrices

Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.

متن کامل

Square root singularities of infinite systems of functional equations

Infinite systems of equations appear naturally in combinatorial counting problems. Formally, we consider functional equations of the form y(x) = F (x,y(x)), where F (x,y) : C × l → l is a positive and nonlinear function, and analyze the behavior of the solution y(x) at the boundary of the domain of convergence. In contrast to the finite dimensional case different types of singularities are poss...

متن کامل

Improving Goldschmidt Division, Square Root, and Square Root Reciprocal

ÐThe aim of this paper is to accelerate division, square root, and square root reciprocal computations when the Goldschmidt method is used on a pipelined multiplier. This is done by replacing the last iteration by the addition of a correcting term that can be looked up during the early iterations. We describe several variants of the Goldschmidt algorithm, assuming 4-cycle pipelined multiplier, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

سال: 2010

ISSN: 1364-5021,1471-2946

DOI: 10.1098/rspa.2010.0124